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(;glassical scattering is based on the action 4 - f853 uwygs
the action over the actual trajectory and S; is over the equivalent without
interaction. For 2-body spherical potential scattering A = A(L,E) - L8,
where ©® is the deflection angle and & is the classical phase, the classical
limit of 2#8,(E). A new, rapidly convergent expression is given for A(L,E).
From this is derived a convergent expansion in 1/E valid for fixed L ¥ O,
and an equivalent form in 1/L valid for fixed E. The lowest term in 1/L

agrees with Massey and Mohr, and higher terms are evaluated.

A. INTRODUCTION

Atomic scattering theory is securely based in quantum mechanics. Just
as properly, many problems are best treated, to a very good approximation,
by classical methods. The quantal justification of this procedure is well
understood!?, but the profound and intimate connection between the quantal

and classical formulations has not always been sufficiently recognized.

All the formulas of classical scattering can be derived from a clas-

3 For spherical

sical action A that can be defined for any collision.
symmetry this is closely related to the classical phase A(L,E), the limit
of the quantal phase shift in the form 2#5 (E). Using the action 4 it is
natural to define the classical scattering amplitude by F(8,E) = U%lei‘ﬁ*i

These definitions will be justified and discussed in Section B.

In order to exploit the parallel further, I intend* to show the quantal
scattering amplitude can be summed so that the classical result is the
leading term and the major quantal corrections can be computed directly and

easily. Naturally, the simplest example on which to work out this program

* Sypported by National Aeronautics and Space Administration. National Science Foundation, and Stanford
Research Institute. ’
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is 2-body isotropic potential scattering. In order to pave the way for
that, Section C of this paper includes a brief restatement of the relevant
classical expressions from that case. They can be put into a form that
may be new and has some merits of rapid converéence and simplicity. The
resulting expressions make it easy to obtain expansions in 1/E valid at
fixed non-zero L and in 1/L valid at fixed E. These results have their
own value independent of their use in II, and some examples will be

worked out.

B. CLASSICAL ACTION AND SCATTERING AMPLITUDE

If the classical trajectory is known for a scattering event, the

corresponding action 1is
S = /p - dq . (1)

The integral diverges because of the tail at large r where the inter-
action usually vanishes, so it is natural to subtract the standard action

for the equivalent collision without interaction,

Sy = Jpo v dqy (2)

The result of the subtraction is the collision action
A = S-§, . (3)

Obviously, if the collision is inelastic S, must be taken 1in two parts:

an incoming part matching the initial trajectory and taken up to the

point of closest approach, and an outgoing part matching the final tra-
jectory and beginning at the point of closest approach of the comparison
trajectory. Further, this definition of A fails to converge for the
coulomb interaction, so the argument is limited to forces of shorter range
le.g., lim r2V(r) = 0].

r®
When the collision is governed by a simple isotropic 2-body potential
V(r), the actions S and S can be written in terms of radial and azimuthal

components:

-0

S = Jprdr + LJ dé (4)
0




m
S, = Jpr.odr + LJ do (5)
0

where ® is the deflection angle of the actual trajectory (@ is not neces-

sarily positive). We then get

-
"

AE,L) - L8 (6)

where

A(E,L)

jbrdr —jprlodr (7)

can be called the classical phase since it represents the limit of the

quantal phase shift o,(E) in the sense
. 1
A(E,L) = 11? 25, (E); (l + §->ﬁ'~ L . (8)
hu—o

It is well known that the classical scattering angle @, differential

cross section o, and collision lifetime Q depend simply on A(L,E):

8 = o ®(L,E) (9)
- -aL = r »
7 | 3L?) nL| a2a)
o = —_— = —_— —_— R (10)
2uE 0 HE | 32
i (11)
¢ %
Inverting Eq. (9) we find
L = L(E8) . (12)
As a consequence of Egs. (9) and () we can assert that
A A(E,9) oA 0 (13)
- [ ’ —87: = .
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It is natural to pursue the implication of Eq. (8) by defining the

classical limit of the scattering matrix S.

= ia(L,E) /&
S, = e'st . (14)

This construct is very reminiscent of the classical wave function,

o, = eSIE (15)

where S is the classical action.?

A form of y_, is the basis of Feynman’s
treatment of quantum mechanics,® and Y., has recently been used to good
effect by Motz.? Expressions like (15) go back to Schrodinger’s demon-
stration of the relation between his equation and the Hamilton-Jacobi
equation, and the same form is encountered in the WKB approximation to the

wave function.

It is therefore no suprise that A(L,E)/24 is identical to the lowest
order WKB approximation to the phase shift &,(E). However, in order to see
clearly the structure of the physics underlying these expressions, it seems
to me of great importance to look upon A(L,E) as an important classical
quantity in its own right, and not to submerge it from view under the time-

honored but demeaning label of “WKB phase shift.’’

It remains to define the classical limit of the scattering amplitude.

It is helpful first to write the quantal amplitude formally as

FE,8) = e ta/® (16)

where Aqu is expanded in powers of #:

= 2
Ay, = AtHA +H2A, L (17)

A being the classical term of Eq. (6). The simplest classical analog of
(16) 1is ’

Fo = et/% (18)

but it is obviously preferable to seek a form such that

lFl2 = o(E,@) . (19)



One is therefore led to look at the next term in the expansion (17),

since (19) would be satisfied if

In(4,) - %l_n o, (20)
We then find that
FL(E,8) = ofeiltarmsal (21)
where
¢ - Re(4,) . (22)

Applying the considerations of semiclassical scattering theory,2 @ can be
shown to depend on A(L,E):

v ‘SZW*%T (le!) (li: ) (23)

where A" = 932A/3L?. Since F, does not include any terms of higher than
zeroth order in #, I shall term it simply the classical scattering
amplitude. (When the distinction must be made, F, can be called the
primitive, and FI the refined, classical amplitude.) When there is a
single term of this form, observations are always confined to the cross
section given by (19) which is purely classical. Semiclassical scattering
appears 1in its most primitive form when 2 or more terms of the form (21)
are added, which results in nonclassical interference effects in the square

of the sum.

It should be pointed out that the expansion of A in powers of 4,
Eq. (17), is suggestive only and probably does not represent a convergent
series mathematically. This is just like the situation encountered in the
well-known breakdown of the WKB expansion of the wave function in the
neighborhood of a classical turning-point. This deficiency in the wave
function can be remedied by the use of different approximating functions
in the connection region, and one of the purposes of the following paper,
IT, is to show what kind of corrections are needed to improve the scattering
amplitude. In general the amplitude will not appear as an analytic function
of # near # = 0, and the same is true of related quantities such as the

phase shift, the collision lifetime, or the density of states. For this




reason, power series expansions may not be at all appropriate for studying
quantal corrections to the classical transport coefficients or virial
coefficients. This phenomenon is quite general, and has been found to
occur also in connection with the Thomas-Fermi formula for the particle

density in a fermion system.®

Despite this failure of the power series expansion, the lowest order
term obtained in a formal expansion like (17) usually does give a very good
approximation for most regions of the variables involved. For example, the
WKB wave function is usually very satisfactory far away from the classical
turning points. Similarly, the classical scattering ampiitude is usually
very good (for large enough energies) except for 6 close to 0 and 7 or near
a rainbow angle, and the classical phase shifts and collision lifetimes are
very good except for energies close to the region of orbiting or near

resonances of an attractive potential.’

C. THE CLASSICAL PHASE A(L,E)
1. INTEGRAL FomrMuLAS

In this section I shall derive some formulas for the classical phase

A(L,E) and its derivatives. A(L,E) can be cast into several alternative

forms:
ALLE) = Lm = 2pyry + 2 j lp(r) - p ldr (24)
"o
R R
= 2 lim { plr)dr — } polr)dr (24a)
R—
o b
R R :
= 2 lim J p(r)dr - p,(R,r)dr (24b)
R—
o by (R)
dv
@ r ——
- (1) —— 4 (24c)
TP Even T ¢
"o



Here the p’s are radial momenta,

L2
pi(r) = ulE - Vv(r)] ~= | (25)
2
L2
pi(r) = 2uE -— | (25a)
2
L2
p2(R,r) = ulE - v(R)] - — (25b)
-2
pl = 2E, pi = 2ulE- VR (25¢)
and the turning points ro.b, and b, (R) = b, are defined by
L o= ro@ulE = Vrd}: = bp, = b,(R)p, . (26)

The connection between the Egs. (24) and (24c) depends on the evaluation
of the integral

R b2 %
F(R) = po(R)dr = p, R{1 - — - L—+ L sin 1 —
b R2 pA
R-12+ of2 (27)
= - -+ —
Po 2 R
and its replacement by a function with the same limiting behavior,
R
F'(R) = [ p,(R,r)dr
by
1
B2V A )
= pp|l - 2 = L—+ 1L sin R
R L
af (x2 - 1)%
= L —_— dx . (28)
x
1
7




The final connection with Egq. (24c) comes about because

F'(rgd = 0,

dF' dv

i) = p(r){ 1~ pr— {2u[E-vVv(r]}! . (29)
dr dr

The first form of Eq. (24) is the familiar one. The second shows how
f

thc phase shift is composed of the difference between two simple action
integrals, one over the radial motion on the actual trajectory and another
over the radial motion on a comparison trajectory with vanishing inter-
action. In the third form the comparison trajectory is taken as force-free
inside R, but with the constant potential V'(r < R) = V(R). The last form
shows the contribution to the phase shift from different regions of the
trajecgory, displaying explicitly the dependence on the radial force

- (dV/dr); this form has the computational advantage of converging rapidly

at large r 1f the interaction 1is of short range.

The classical deflection function is well known to be a derivative

of A:

«©

oA dr
Q(L,E) ={— = - 2L —_— (30)
oL E . rzp(r)
1]
o w
dr dr
= 2L —_— - 2L
brzpo(r) rorzp(r) (30a)
R R
dr dr
= 2 limlL —_— - L (30b)
R=o b rzpl(R,r) r2p(r)
1 0
dV
o4} r —
dr dr
= =L (30¢)
E - V(r) r2p(r)

0

The last form shows the dependence of ® on the radial force. It is equiv-
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alent to a form used by Firsov' in the study of the inverse problem, the




deduction of the potential from the classical deflection. Since it con-

verges more rapidly than the first form at large r, it is also useful for

the direct problem. The classical collision lifetime is also a derivative
of A:
/aA ml’ -1y -1 =1
Q(L,E) = \SEL - 2n tp” " {r) = pg idr = 2ur py (31)
. o
R -R
. ( I dr dr ]
= 2 lim<pu - {31a)
R~ p(r) po(r{f
Jro b 4
R R
2 1i ar ar (31b)
= im S -
R-o p(r) " py(R,r)
)ro ‘bl(R) :

Tl oav
(‘ ““)[E - V(r) - L?ur?]
dr

= U dr . (31¢)
[E - Virn]2%p(r)

The last form converges rapidly, and displays conveniently the analytical
behavior of Q.

It is useful to introduce another form of these equations depending

on reduced variables:

©
1

— , Ulryp)

L2
2#Er§

1}

1 - U(ry) - (32)

With these we can write:

®r, U’ (rop)

A(L,E) = [2#E]%r0 [ {h - vrye)lp® - [1 - U(ro)]}%dp ,

11 =U(ryp)

(33)



@

OLE) = = - 201 - U(ro)]‘/ZJ dp ‘
L ol =U(r )1 p? - [1 - U(r )}
‘ (34)
? U (ry,p)
- o] - prB ] - - -
. = -1 - Ulrl” Jl L~ Uiryp) {1 = Ulrgo)1p? = [1 - UGr )Y dp
(34a)
% U (rop){{1 = UGryp)]p? - 2[1 - U(ry)]tdp
QUL.E) - - (—) " l
| 2E L =0T - Urgp)lp? -[1 - Urg)]}e

(35)

Hligher derivatives of A with respect to L can be obtained by dif-

ferentiating with respect to r; and using

(aro) ] Lr, ) (i)‘/z [1-U(ry]% 6
Llg LT - uE () VE) 201 - UG )] - U (ry)

For evaluating the classical cross section we need the next derivative;

differentiating Eq. (34) we get:

2
ree - 2 . 22
oL aL2
2(9uEr2) ro U (r) [1 = Ulrgo)] = U (rgo) (1 = Ur )]} p
= B p
201 = Ulrg)] = rgl' (rg) |, {[1 - Ury@)p2= 11 = U(r )12

(37)

An alternative form, involving the second derivative of U, would be ob-

tained by starting from Eq. (34a).

10




2. Expansions 1IN 1/E anp 1/L

In the limit of high energy or high L these expressions for A and
its derivatives are conveniently evaluated by expansion in powers of U
and its derivatives, which is equivalent.to expansion in powers of 1/E.
The expansion for A converges for all L > 0 and all E > 0 if the potential
is entirely repulsive; for an attractive potential convergence is assured
for all L if E > |V_.
min
iU(er)l <1 for all p > 1. The term 1 - U(rop)_1 is expanded in powers

, and for any E provided L is large enough that
of U, and the square root is expanded after writing it as

(0 = 1)A[1 = Ulryp) + G(ry,p)(p2 = 1)711% (38)
where

G(ry,p) = Ulry) = Ulryp) . (39)

For the expansion coefficients we can use the identity

12 1/2! RN LR L7 )T (_)m<k +1-3/2 )
k1 (172 = k= DR (=3/2) k! 1! k1 )

(40)

The integrand then involves terms Gl(ro,p)U'+k(r0p), and for I # 0 it 1is

useful to substitute for U(r o) from (39). We then have

A'(r,p0)

A(LE @ d

LE) e Cﬂyﬁk (0 = DA (ryp) ——— d(p?)
k . 3(o?)

+ 353 (1/2>(m ¥ k) (=)*P e (r ) (pz-l)yf’c“”(ro, p)——ac— d(p?)
= P 1 3(p?)

(41)

After an integration by parts A(L,E) can be expressed in a form free of

derivatives of the potential,

11




ALE ® 1/2 1/2 /

o 0( i )Hm e r(pz " DA )
2, k= m

(ZuE)zro ’ 1 .

l+1/2
)(—)**P*l ;;;foé-b"**’P<ro) jm(pz-1)"l*%’c’+P+1<r0,p)d<p2>
1

(42)

From this, differentiation with respect to L will give 8, I', etc. These
contain successively higher derivatives of U with respect to r, which
cannot be eliminated by further integration by parts. Thus, the nth
derivative 0"A/OL" includes in its leading term an integral over 0"U/9p",

1
weighted near the turning point by the factor (p? - l)—é.

An alternative form for A, particularly useful when U is a differ-
entiable function, is obtained by a different integration by parts,
followed by considerable manipulation (see Appendix). 1In the end one

needs the coefficients

(-)a+er! (g = 1/2)!
1,t) - . (43
fla. 1) (t+1) (1-1/D'(g- )'(g- Di(t +1-q) (43)

and the integrals

o] alUt+l(r P) 9
0
J, U p)l = (p? - 1A ———— d<i> (44)
’ . a(p2)l 2
The final form of A is then
O(LLE © -
——i———l— = 2 $ flg, 1,007 (r ), ,[U(rye)] . (45)
(2,uE)l/"r0 g=0 1,¢=0 ’
It is also useful to have the alternative form
A(LE o
(L,E) = = b3 g(p,l,t)UP—'(ro)Jl t[U(rop)] s (46)
L p=0 1,t=0 ‘

12



where

glp,1,t) = (47)

k- 1/2 _
%( . )f(p ‘k,l,t)

The expansions given in Egs. (42), (45), and (46) are series in E !
in which L appears implicitly in each term through the functional depend-
ence between L and r, and thus U(r,) and U(r p). For many purposes it
is useful to make this dependence explicit in the form of an expansion-—
there are actually two expansions, one valid for small L and the other

for large. Both can be obtained by a single procedure.

Let us write

rg = 2?4 ¢ , (48)
and expand U(rg) and U(rp):
¢’ rde(ro) ol A
Ulry) = £ — |——— = = U (49)
Pt ARy iJ!
Cj —BjU(rop) ] A2 BjU(x )
| 9(ry)’ Iojirii a(p?yd
When L is small we can expand the turning point r, about z = y, the turning
peint for L = 0:
Uly) = 1; (51)

when L is large we can expand r, about the impact parameter b. In either

case, we need the dependence of ¢ on L or b. This is obtained from the

relation

b2 - rg[l - U(ro)] = (xz + c)[l - U(ro)] (52)

Using Eq. (49) (note its convention defining Uij)!), this can be converted

to the form

[+¢] .
c = Yy, t 2 7jc’ , (53)

j=2

13




where

b2 - x2(1 - U)

Yo T

1 -U - szv(l)

and
) [ vl g
Y. = - + . (54)
’ 1-vu, -2t G- DY 7!

As long as 7y, and ¢ are small, iteration of (53) gives

= Yoty (ry H 2Dyl t (v, + 2y,y, v yByh Ll (55)

The coefficients 7y simplify in the 2 cases of interest:

b2
a) L near 0: Yo =
}’ZU.;SI)
(j~1) 27(j)
._1 ij Y Uy}
Y, = - LT - , (56)
yZU(l) (; - 1) j!
y
27
b bb

b) L large: Yo °

(';1) 2r1Cy5)
= ) Ly (57)
Y. = — - - . 7
1-Ub-b2U£1) (]‘1)' ]!

In case (a) the expansion is in ascending powers of b2 or L?. 1In case (b),
as long as r3U(r) = 0 for r = ®, the expansion is in descending powers of
b or L, and is in fact an asymptotic expansion. The same is true when c
1s inserted in (49) and (50) and these in turn in Eq. (45) or (46). 1In
case (a), in the limit L = 0, we finally get a result that could be ob-
tained much more easily by expanding Eq. (3lc) directly after setting

L = 0.

14



3. AN ExawprLE: THE PoTENTIAL r 7

The evaluation of the integrals in (42) and (44) can be carried out
analytically if U has a simple functional form. For a simple power law

of the form r°", we encounter the integrals

. RV n- 3
1

I(n) 5 I(n - 2) )

It
"

n -

I(3)

1. I(2) g . (58)

With

4 n
U = «_L—E(—U— , (59)
roP

the phase can be expressed as a series in inverse powers of b, the impact

parameter:

EA(L,E)
4el

H+

= ®B) = ﬁo a, (n)g nkH1)

b E‘/n
e
o €

The first few coefficients @,(n) are given here for the cases n = 4,6,12:

where

n = 4, o« = - I(4) = - 0.785398,
3
@, = 5»1(8) = + 0.736309,
10
a . - I(4) - —1I(12) = - 2.07394;
2 3
n = 6, a, = - I(6) = - 0.589048,
5
@, = ’5-1(12) =+ 0.966405
21 28
a, = —-75 I(6) - j; I(18) = = 9.06407;

15




n o= 12, a, = - I(12) = - 0.386562,
11
@) = — 1(24) = 1.45302,
136
a, = = 31012) = — I(36) = - 10.82755.

The first term @, is just the one obtained by Massey and Mohr. !

The value of the higher terms in extending the applicable range of
the analytical formula to smaller impact parameters is illustrated in
Table I with the repulsive r 2 potential as the example. In the table
we also give exact values of the function ®(b/o) = EA(L,E)/4€Ll for a wide
range of values of B to supplement Hirschfelder’s tablel? where the de-
flection angle 9A/OL may be found. The tabulated values were obtained by
evaluation of the integral, Eq. (24c), for A(L,E) by Gauss-Mehler
quadrature.!3 The first few values given by the expansion in Table I

illustrate the asymptotic nature of the series, the higher terms diverging.

16




Table I

®(b/c) = Ena(L,E)/4cL AS A FUNCTION OF 8 = (b/o)(E/e)%
FOR n = 12: EXACT CALCULATION AND ASYMPTOTIC EXPANSION
(e Aansion)
B D(exact) B8 ®(exact) - i
3 Terms 2 Terms 1 Term -

0.06 | -32.331 1.00 | -0.13476

0.08 | -23.405 1.05 [-9.7202 x 1072

0.10 | -18.099 1.10 [-6.8663 x 1072

0.15 | -11.099 1.15 |-4.7543 x 1072|-~9.2189 x 1072 | ~2.1491 x 1072 | -7.2251 x 1072
0.20 | - 7.6338 §1.20 |-3.2353 x 1072] -4.0354 x 1072 | -2.5078 x 1072 | -4.3356 x 1072
0.25 | - 5.5790 N 1.25 [-2.1731 x 1072 -2.3256 x 1072 | -1.9742 x 107? | -2.6604 x 10 2
0.30 |- 4.2281 | 1.30 |-1.4483 x 1072|-1.4771 x 1072 | -1.3915 x 1072 | -1.6592 x 1072
0.35 | - 3.279 [ 1.35 [-9.6276 x 107°[-9.687 x 1075 | -9.467 x 107° | ~1.0549 x 1072
0.40 | - 2.5826 || 1.40 |-6.4127 x 1073 ~6.4257 x 1073 | -6.3663 x 1073 | -6.8184 x 1073
0.45 | - 2.0534 || 1.45 |-4.2041 x 1073| -4.2972 x 1073 | -4.2804 x 1073 | -4.4751 x 1073
0.50 | - 1.6419 |1 1.50 |-2.8972 x 107°|-2.8981 x 107% | -2.8931 x 1073 | -2.9794 «x 1073
0.55 | - 1.3160 [l 1.55 |-1.9722 x 1073|~1.9724 x 1073 | ~1.9709 x 1073 | -2.0102 x 1073
0.60 |- 1.0546 || 1.60 |-1.3554 x 1073 -1.3555 x 1073 | -1.3550 x 1073 | -1.3733 «x 1073
0.65 | -~ 0.84292 I 1.70 |-6.5926 x 107*| ~6.5926 x 107% | -6.5921 x 107% | -6.6349 x 1074
0.70 | - 0.67043 || 1.80 |-3.3308 x 10%|-3.3307 x 107% | -3.3306 x 1074 [ -3.3415 x 1074
0.75 | - 0.52945 f| 1.90 |-1.7436 «x 107* ~1.7435 x 107* | -1.7465 x 107*
0.80 | -~ 0.41421 || 2.00 |-9.4289 «x 1073 -9.4288 x 10°° | -9.4375 x 1077
0.85 | = 0.32027 || 2.50 | -6.4850 x 10”° -6.4850 x 107® | -6.4854 x 107°
0.90 | - 0.24416 || 3.50 | -1.1439 x 1077 -1.14394 x 1077
0.95 | - 0.18309 || 5.00 | -1.5834 x 107° -1.58336 x 1077

NOTE: For 8= 1.15, 1.20, and 1.25 the best approximation is given by the value underlined, showing
the asymptotic nature of the expansion. For larger B, further terms would give a more exact
result.
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APPENDIX

To obtain Eq. (45), the second type of integral in Eq. (41) is trans-

formed by successive integrations by parts so that

1
+1+1 (- ) ! AR ti(r 1)
[m(pZ - 1)—(‘1"%) ?;___ d(pz) - 2 r(p2 - 1)—1/2 _.____._0_._
)y 3" [, -3) ')

v —2)i J1

d(p?)
(A-1)
Equation (39) is then substituted for G. The resulting cluster of co-

efficients can be reduced by successive application of various identities

among the binomial coefficients, including the following:

(-)* (:) - (l;"‘) , (A-2)
) ) e
)G

In the end it is found that the terms arising from both the first integral

t Ma

in Eq. (41) [which is treated as in Eq. (42)], and from the other integrals
(with I # 0), are special cases of the same general formula, even though

the routes to them are different.
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